Baccalauréat ES France juin 2004

Exercice 1 5 points

Commun à tous les candidats

Pour chacune des questions ci-dessous, une seule des réponses proposées est exacte. On demande de cocher cette réponse sur la feuille. Une bonne réponse rapporte 0,5 point. Une mauvaise réponse enlève 0,25 point. L'absence de réponse n'apporte ni n 'enlève aucun point.

Si le total des points est négatif, la note globale attribuée à l'exercice est 0.

Pour les trois premières questions, A et B sont des évènements associés à une expérience aléatoire 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement contraire de A, alors 1. Si B est l'évènement sassociés 1. P(A) = 1 + p(B) 1. P(B) 1. Si B est l'évènement sassociés 1. P(A) = 1 + p(B) 1. P(B	QUESTIONS	RÉPONSES					
Pour les trois premières questions, A et B sont des évènements associés à une expérience aléatoire 1. Si B est l'évènement contraire de A, alors 2. Si A et B sont deux évènements indépendants et $p(A) \neq 0$, alors 2. Si A et B sont deux évènements indépendants et $p(A) \neq 0$, alors 3. Si A et B sont deux évènements incompatibles alors 4. Soit a un nombre réel strictement positif $\lim_{x \to -\infty} \ln(-ax + 5) =$ 5. La représentation graphique de la fonction logarithme népérien admet 6. $e^{\ln x} = x$ pour tout x appartenant à 7. Soit un réel a . $\ln(e^a) - 2e + \ln(1) =$ 8. Soient a et b des réels strictement positifs, $e^{\ln a} + e^{-\ln b} =$ 9. Une primitive de la fonction logarithme népérien sur $[0; +\infty[$ 9. Une primitive de la fonction logarithme népérien sur $[0; +\infty[$ • $x \mapsto \ln (\frac{1}{x}) - 2$ • $x \mapsto \ln (\frac{1}{x}) - 2$ • $x \mapsto \ln (\frac{1}{x}) - 2$		(à porter sur la feuille					
à une expérience aléatoire 1. Si B est l'évènement contraire de A, alors 2. Si A et B sont deux évènements indépendants et $p(A) \neq 0$, alors 2. Si A et B sont deux évènements indépendants et $p(A) \neq 0$, alors 3. Si A et B sont deux évènements incompatibles alors 4. Soit a un nombre réel strictement positif $\lim_{X \to -\infty} \ln(-ax + 5) =$ 5. La représentation graphique de la fonction logarithme népérien admet 6. $e^{\ln x} = x$ pour tout x appartenant à 6. $e^{\ln x} = x$ pour tout x appartenant à 7. Soit un réel a . $e^{a} - 2e + e$ $e^{a} - 2e$ $e^{a} - b$ $e^{\ln a} + e^{-\ln b} =$ 9. Une primitive de la fonction logarithme népérien sur $[0; +\infty[$ $e^{x} \mapsto \ln(x - x) = x + 3$ $e^{x} \mapsto \ln(x - x) = x + $		ANNEXE 1)					
1. Si B est l'évènement contraire de A, alors **p(A) = 1 + p(B)	Pour les trois premières questions, A et B sont des évènements associés						
1. Si B est l'évènement contraire de A, alors $ \begin{array}{c} \bullet p(A) = 1 - p(B) \\ \bullet p(A) = p(B) \\ \end{array} $ 2. Si A et B sont deux évènements indépendants et $p(A) \neq 0$, alors $ \begin{array}{c} \bullet p(A) = b \\ \bullet p(A) = p(B) \\ \bullet p(B) =$							
2. Si A et B sont deux évènements indépendants et $p(A) \neq 0$, alors • $p(A) = p(B)$ • $A \cap B = \emptyset$ • $p(A \cup B) = p(A), p(B)$ • $p(A \cup B) = p(A), p(B)$ • $p(A \cup B) = p(A) + p(B)$ • $p(A \cup B) = p(B)$ • $p(A \cup B) = p(B)$ • $p(A \cup B) = p(B$		$\bullet \ p(A) = 1 + p(B)$					
2. Si A et B sont deux évènements indépendants et $p(A) \neq 0$, alors $ \begin{array}{c} \bullet A \cap B = \emptyset \\ \bullet p(A \cup B) = p(A).p(B) \\ \bullet p_A(B) = p(B) \\ \bullet p(A \cup B) = p(A) + p(B) \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet p(A \cap B) = 1 \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 $	1. Si B est l'évènement contraire de A, alors	$\bullet p(A) = 1 - p(B)$					
2. Si A et B sont deux évènements indépendants et $p(A) \neq 0$, alors $ p(A \cup B) = p(A).p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A) + p(B) $ $ p(A \cup B) = p(A).p(B) $ $ p(A \cup B) = p(B)$ $ p(A \cup B) = p(A).p(B) $ $ p(A \cup B) = p(B)$ $ p(A \cup$		• $p(A) = p(B)$					
indépendants et $p(A) \neq 0$, alors • $p_A(B) = p(B)$ • $p(A \cup B) = p(A) + p(B)$ • $p(A \cup B) = p(A) + p(B)$ • $p(A) = 1 - p(B)$ • $p(A \cap B) = 1$ • $p(A$		• $A \cap B = \emptyset$					
3. Si A et B sont deux évènements incompatibles alors $ \begin{array}{c} \bullet p(A \cup B) = p(A) + p(B) \\ \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \bullet -\infty \\ \bullet 0 \\ \bullet +\infty \\ \bullet 0 \\ \bullet 0 \\ \bullet 0 \\ \bullet +\infty \\ \bullet 0 $	2. Si A et B sont deux évènements	• $p(A \cup B) = p(A).p(B)$					
3. Si A et B sont deux évènements incompatibles alors $ \begin{array}{c} \bullet p(A) = 1 - p(B) \\ \bullet p(A \cap B) = 1 \\ \hline \bullet -\infty \\ \bullet 0 \\ \bullet +\infty \\ \hline \bullet +\infty \\$	indépendants et $p(A) \neq 0$, alors						
incompatibles alors • $p(A \cap B) = 1$ • $-\infty$ 4. Soit a un nombre réel strictement positif $\lim_{x \to -\infty} \ln(-ax + 5) = 0$ • $+\infty$ 5. La représentation graphique de la fonction logarithme népérien admet • une asymptote verticale • une asymptote horizontale • une tangente horizontale • une tangente horizontale • 0 • 0 • $+\infty$ • une asymptote verticale • une tangente horizontale • 0 • 0 • une asymptote horizontale • 0		$\bullet \ p(A \cup B) = p(A) + p(B)$					
4. Soit a un nombre réel strictement positif $\lim_{x \to -\infty} \ln(-ax+5) = 0$ • une asymptote verticale • une asymptote horizontale • une asymptote horizontale • une tangente horizontale • une tangente horizontale • 0 • une asymptote verticale • une asymptote horizontale • une tangente horizontale • 0 •	3. Si A et B sont deux évènements	$\bullet \ p(A) = 1 - p(B)$					
4. Soit a un nombre réel strictement positif $\lim_{x \to -\infty} \ln(-ax+5) =$ 5. La représentation graphique de la fonction logarithme népérien admet 6. $e^{\ln x} = x$ pour tout x appartenant à • une asymptote verticale • une asymptote horizontale • une tangente horizontale • une tangente horizontale • $e^{\ln x} = x$ pour tout $e^{x} = x$ pour tout $e^$	incompatibles alors	• $p(A \cap B) = 1$					
$\lim_{x \to -\infty} \ln(-ax+5) = $		• -∞					
• une asymptote verticale • une asymptote verticale • une asymptote horizontale • une tangente horizontale • une asymptote verticale • une asymptote horizontale		• 0					
• une asymptote verticale • une asymptote verticale • une asymptote horizontale • une tangente horizontale • une asymptote verticale • une asymptote horizontale	$\lim_{x \to -\infty} \ln(-ax + 5) =$	• +∞					
5. La représentation graphique de la fonction logarithme népérien admet• une asymptote horizontale6. $e^{\ln x} = x$ pour tout x appartenant à• \mathbb{R} • $ 0; +\infty[$ • $ 0; +\infty[$ 7. Soit un réel a . $\ln (e^a) - 2e + \ln(1) =$ • $e^a - 2e + e$ • $e^a - 2e$ 8. Soient a et b des réels strictement positifs, • $e^{\ln a} + e^{-\ln b} =$ • $a - b$ • $a - b$ <b< td=""><td><i>x</i> • • • • • • • • • • • • • • • • • • •</td><td>une asymptote verticale</td></b<>	<i>x</i> • • • • • • • • • • • • • • • • • • •	une asymptote verticale					
logarithme népérien admet • une tangente horizontale • \mathbb{R} • $]0; +\infty[$ • $[0; +\infty[$ • $[$	5. La représentation graphique de la fonction						
6. $e^{\ln x} = x$ pour tout x appartenant à • ℝ •]0; +∞[• [0; +∞[• $e^a - 2e + e$ • $e^a - 2e + e$ • $e^a - 2e$ 8. Soient a et b des réels strictement positifs, $e^{\ln a} + e^{-\ln b} =$ 9. Une primitive de la fonction logarithme népérien sur $[0; +\infty[$ • $x \mapsto \frac{1}{\ln x}$ • $x \mapsto x \times \ln x - x + 3$ • $x \mapsto \ln\left(\frac{1}{x}\right) - 2$ • $x < 1$							
• $[0; +\infty[$ • $e^a - 2e + e$ • $e^a - 2e + e$ • $e^a - 2e$ In $(e^a) - 2e + \ln(1) =$ • $e^a - 2e$							
7. Soit un réel a . $\ln(e^a) - 2e + \ln(1) =$ 8. Soient a et b des réels strictement positifs, $e^{\ln a} + e^{-\ln b} =$ 9. Une primitive de la fonction logarithme népérien sur $[0; +\infty[$ • $e^a - 2e + e$ • $e^a - 2e$ • $a - 2e$ • $a - b$ • $a - b$ • $a - b$ • $ab + 1$ • $x \mapsto \frac{ab + 1}{b}$ • $x \mapsto \frac{1}{\ln x}$ • $x \mapsto x \times \ln x - x + 3$ • $x \mapsto \ln\left(\frac{1}{x}\right) - 2$	6. $e^{\ln x} = x$ pour tout x appartenant à	•]0;+∞[
7. Soit un réel a . $\ln(e^a) - 2e + \ln(1) =$ 8. Soient a et b des réels strictement positifs, $e^{\ln a} + e^{-\ln b} =$ 9. Une primitive de la fonction logarithme népérien sur $[0; +\infty[$ • $e^a - 2e$ • $-ab$ • $a - b$ • $ab + 1$ • $x \mapsto \frac{ab + 1}{b}$ • $x \mapsto \frac{1}{\ln x}$ • $x \mapsto x \times \ln x - x + 3$ • $x \mapsto \ln\left(\frac{1}{x}\right) - 2$		• [0; +∞[
$\ln(e^{a}) - 2e + \ln(1) = $ • $a - 2e$ • $-ab$ • $a - b$		• e ^a – 2e + e					
8. Soient a et b des réels strictement positifs, $e^{\ln a} + e^{-\ln b} =$ 9. Une primitive de la fonction logarithme népérien sur $[0; +\infty[$ • $-ab$ • $a-b$ • $ab+1$ • $x \mapsto \frac{ab+1}{b}$ • $x \mapsto \frac{1}{\ln x}$ • $x \mapsto x \times \ln x - x + 3$ • $x \mapsto \ln\left(\frac{1}{x}\right) - 2$ • $x < 1$	7. Soit un réel <i>a</i> .	• e ^a – 2e					
8. Soient a et b des réels strictement positifs, $e^{\ln a} + e^{-\ln b} = \underbrace{ab+1 \atop b}$ 9. Une primitive de la fonction logarithme $népérien sur [0; +\infty[$ $x \mapsto \frac{1}{\ln x}$ $x \mapsto x \times \ln x - x + 3$ $x \mapsto \ln \left(\frac{1}{x}\right) - 2$ $x \mapsto x < 1$	$\ln(e^a) - 2e + \ln(1) =$	• a – 2e					
$e^{\ln a} + e^{-\ln b} = \underbrace{ \frac{ab+1}{b}}_{\bullet x \mapsto \frac{1}{\ln x}}$ 9. Une primitive de la fonction logarithme $e^{\ln a} + e^{-\ln b} = \underbrace{\frac{ab+1}{b}}_{\bullet x \mapsto \frac{1}{\ln x}}$ $e^{x \mapsto x \times \ln x - x + 3}$ $e^{x \mapsto \ln \left(\frac{1}{x}\right) - 2}$ $e^{x \mapsto 1}$		• −ab					
e ^{m a} + e ^{- m b} = • ${b}$ 9. Une primitive de la fonction logarithme népérien sur $[0; +\infty[$ • $x \mapsto \frac{1}{\ln x}$ • $x \mapsto x \times \ln x - x + 3$ • $x \mapsto \ln\left(\frac{1}{x}\right) - 2$ • $x < 1$	8. Soient <i>a</i> et <i>b</i> des réels strictement positifs,	• a – b					
9. Une primitive de la fonction logarithme $ \begin{array}{ll} \bullet x \mapsto \frac{1}{\ln x} \\ \bullet x \mapsto x \times \ln x - x + 3 \\ \bullet x \mapsto \ln \left(\frac{1}{x}\right) - 2 \end{array} $ $ \bullet x \to 1 $	$\ln a = \ln h$	ab+1					
népérien sur $[0; +\infty[$ $\bullet x \mapsto x \times \ln x - x + 3$ $\bullet x \mapsto \ln\left(\frac{1}{x}\right) - 2$ $\bullet x < 1$	ema + e ma =	• <u></u>					
népérien sur $[0; +\infty[$ $\bullet x \mapsto x \times \ln x - x + 3$ $\bullet x \mapsto \ln\left(\frac{1}{x}\right) - 2$ $\bullet x < 1$		1					
népérien sur $[0; +\infty[$ $\bullet x \mapsto \ln x - x + 3$ $\bullet x \mapsto \ln \left(\frac{1}{x}\right) - 2$ $\bullet x < 1$		$\bullet x \mapsto \frac{\ln x}{\ln x}$					
• x < 1	9. Une primitive de la fonction logarithme	$\bullet x \mapsto x \times \ln x - x + 3$					
··· · -	népérien sur [0; +∞[• $x \mapsto \ln\left(\frac{1}{x}\right) - 2$					
10 December of a College of the College Colleg		• <i>x</i> < 1					
10. Pour tout reel x strictement interieur à 1, $ \bullet x < 1 - e $	10. Pour tout réel <i>x</i> strictement inférieur à 1,	• x < 1 - e					
ln(1-x) > 1 est équivalent à : • $x > e$	ln(1-x) > 1 est équivalent à :	• x > e					

EXERCICE 2
Candidats n'ayant pas suivi l'enseignement de spécialité

5 points

$$f(x) = (x^2 + 1)e^{-x+2}$$
.

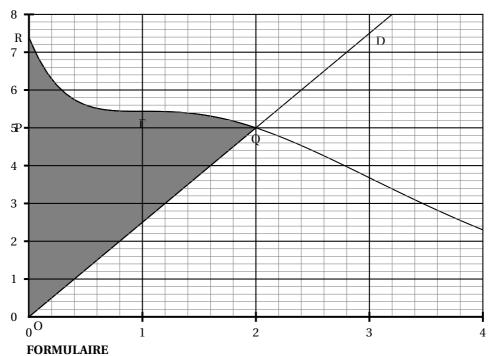
On note Γ la représentation graphique de f dans un repère orthogonal et D la droite d'équation $y = \frac{5}{2}x$.

On note \mathscr{A} l'aire (en unités d'aire) du domaine délimité par la courbe Γ , la droite D et la droite d'équation x=0.

On note O, P, Q et R les points de coordonnées O(0 ; 0), P(0 ; 5), Q(2 ; 5) et $R(0; e^2)$. (Voir la représentation ci-dessous).

- 1. Détermination d'un encadrement de l'aire ${\mathscr A}$
 - **a.** Montrer par le calcul que le point Q appartient à la droite D et à la courbe Γ et que la courbe Γ coupe l'axe des ordonnées au point R.
 - **b.** Calculer, en unités d'aire, la valeur exacte des aires de chacun des triangles OPQ et OQR.

En déduire un encadrement de l'aire \mathcal{A} en unités d'aire.


- 2. Calcul de la valeur exacte de l'aire A
 - **a.** Exprimer l'aire \mathcal{A} à l'aide d'une expression faisant intervenir une intégrale.
 - **b.** Soit G la fonction définie pour tout x élément de $\mathbb R$ par

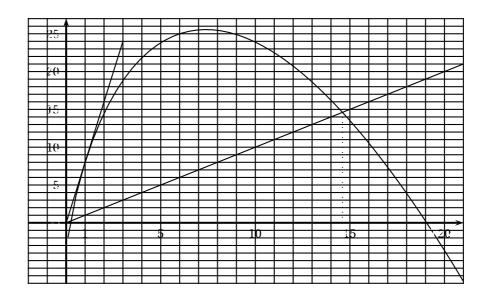
$$G(x) = (-x^2 - 2x - 3) e^{-x+2}$$
.

On note G' la fonction dérivée de G sur \mathbb{R} .

Pour tout x élément de \mathbb{R} , calculer G'(x) en donnant les détails du calcul. En déduire une primitive de la fonction f sur \mathbb{R} .

c. Déterminer la valeur exacte de \mathscr{A} . En donner une valeur approchée arrondie au centième.

L'aire dun triangle est donnée par : Aire = $\frac{\text{Base} \times \text{Hauteur}}{2}$


• La dérivée d'un produit de fonctions (sur des intervalles convenables) : (uv)' = u'v + uv'.

EXERCICE 3 5 points

Commun à tous les candidats

On considère la courbe ci-dessous représentative d'une fonction g définie et dérivable sur l'intervalle I =]0; 21].

La courbe est à rendre avec la copie.

La droite tracée sur le graphique est tangente à la courbe au point d'abscisse 1 et passe par l'origine. On prendra 7,4 comme valeur approchée du réel de l'intervalle I pour lequel g atteint son maximum.

- 1. On note g' la fonction dérivée de la fonction g sur l'intervalle I. Utiliser le graphique pour donner les valeurs de g(1) et g'(1). (Aucune justification n'est demandée).
- 2. Résoudre graphiquement dans l'intervalle I les trois inéquations ci-dessous (les valeurs lues sur le graphique seront données à 10⁻¹ près). Aucune justification n'est demandée, mais pour l'inéquation (3) les éléments graphiques utiles seront portés sur la courbe

 $(1): g(x) \ge 0$

(2): $g'(x) \ge 0$

(3): g(x) < x.

- **3.** On admet que pour tout x de l'intervalle I, $g(x) = -4 + ax(3 b \cdot \ln x)$ où a et b sont deux nombres réels. On veut calculer a et b.
 - **a.** Montrer que pour tout x élément de l'intervalle I : $g'(x) = a [3 b(1 + \ln x)]$. Exposer le détail des calculs.
 - **b.** À l'aide des valeurs de g(1) et g'(1) obtenues à la question 1., calculer a et b.

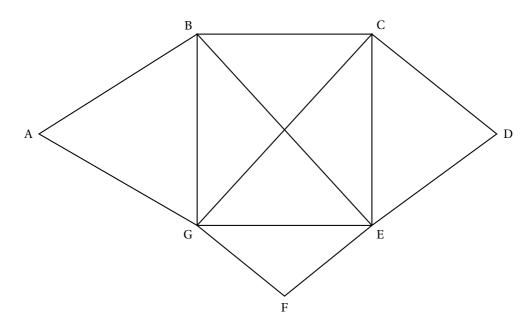
Exercice 4 5 points

Enseignement obligatoire

La subvention accordée par une entreprise à son club sportif était de 3 000 € pour l'année 1998.

Depuis 1998, L'évolution de la subvention en pourcentage d'une année à l'autre est celle décrite dans le tableau ci-dessous :

Année	1999	2000	2001	2002	2003
Evolution en pourcentage	+ 17%	+ 15%	+ 10 %	+9%	+6%


Par exemple, le taux d'évolution de la subvention de 2000 à 2001 est de 10%.

- a. Calculer, pour chacune des années, le montant de la subvention attribuée (en euro). Les résultats seront arrondis à l'unité.
 - **b.** Le responsable sportif se plaint d'une diminution continuelle des subventions depuis l'année 1999. Quelle confusion fait-il?
- 2. On admet que le montant de la subvention en 2003 est de 5 130 €.
 - **a.** Calculer le pourcentage de diminution ou d'augmentation de la subvention de 1998 à 2003.
 - **b.** Si le taux d'évolution de la subvention d'une année à l'autre était fixe et égal à t %, quelle serait la valeur de t arrondie à 10^{-3} près qui donnerait la même augmentation de la subvention entre 1998 et 2003?
 - **c.** Avec ce même taux d'évolution *t*, quelle serait la subvention, arrondie à l'unité, en 2004?

EXERCICE 4 5 points

Enseignement de spécialité

Le graphe ci-dessous indique, sans respecter d'échelle, les parcours possibles entre les sept bâtiments d'une entreprise importante.

Un agent de sécurité effectue régulièrement des rondes de surveillance. Ses temps de parcours en minutes entre deux bâtiments sont les suivants :

AB: 16 minutes AG: 12 minutes; BC: 8 minutes; BE: 12 minutes; BG: 8 minutes; CD: 7 minutes; CE: 4 minutes; CG: 10 minutes; DE: 2 minutes; EF: 8 minutes; EG: 15 minutes; FG: 8 minutes.

Sur chaque arête, les temps de parcours sont indépendants du sens de parcours.

- 1. En justifiant la réponse, montrer qu'il est possible que l'agent de sécurité passe une fois et une seule par tous les chemins de cette usine. Donner un exemple de trajet.
- **2.** L'agent de sécurité peut-il revenir à son point de départ après avoir parcouru une fois et une seule tous les chemins? Justifier la réponse.
- **3.** Tous les matins, l'agent de sécurité part du bâtiment A et se rend au bâtiment D.

En utilisant un algorithme que l'on explicitera, déterminer le chemin qu'il doit suivre pour que son temps de parcours soit le plus court possible, et donner ce temps de parcours.