j désigne le nombre complexe de module 1 et d'argument $\frac{2\pi}{3}$.

- **1.** Résoudre, dans l'ensemble \mathbb{C} des nombres complexes l'équation d'inconnue z: (1-2i)z = (1-i)z 1 i.
- **2.** Dans le plan complexe muni d'un repère orthonormal $(0, \overrightarrow{u}, \overrightarrow{v})$ d'unité graphique 4 cm, on considère les points A, B et D tels que :
 - A est le point d'affixe $z_A = 1 i$,
 - B est l'image du point A par la rotation R de centre O et d'angle $\frac{\pi}{3}$;
 - D est le symétrique du point A par rapport à O.
 - a. Faire une figure et la compléter au fur et à mesure.
 - **b.** Calculer le module et un argument de l'affixe $z_{\rm A}$ du point A.
 - **c.** Déterminer la forme algébrique de l'affixe $z_{\rm D}$ du point D. Justifier.
 - **d.** Calculer le module et un argument du nombre complexe $z_{\rm B}$ affixe du point B.
 - e. Justifier que le triangle AOB est équilatéral, en déduire la valeur de la distance AB.
- **3.** On note C l'image de B par la translation T de vecteur d'affixe -1 + i.
 - **a.** Établir l'égalité vectorielle $\overrightarrow{AD} = 2\overrightarrow{BC}$.
 - b. Démontrer que le quadrilatère OBCD est un parallélogramme.
 - **c.** Prouver que CD = AB.
 - d. En déduire que le quadrilatère ABCD est un trapèze isocèle.