Le plan complexe est muni d'un repère orthonormal direct $\left(\mathbf{O},\ \overrightarrow{u},\ \overrightarrow{v}\right)$ d'unité graphique 1 cm.

On désigne par i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

- **1.** Résoudre dans l'ensemble \mathbb{C} des nombres complexes l'équation $z^2 + 4z + 16 = 0$.
- **2.** Pour tout nombre complexe z, on pose $P(z) = z^3 64$.
 - **a.** Calculer P(4).
 - **b.** Trouver les réels a, b et c tels que, pour tout nombre complexe z, $P(z) = (z-4)(az^2 + bz + c)$.
 - **c.** Résoudre dans l'ensemble des nombres complexes l'équation P(z) = 0.
- **3.** On considère les points A, B et C d'affixes respectives : $z_A = -2 + 2i\sqrt{3}$, $z_B = \overline{z_A}$ et $z_C = 4$.
 - **a.** Établir que $z_A = 4e^{i\frac{2\pi}{3}}$. Écrire z_B sous la forme $re^{i\theta}$, où r est un nombre réel strictement positif et θ un nombre réel compris entre $-\pi$ et π .
 - **b.** Placer les points A, B et C dans le plan muni du repère (O, \vec{u}, \vec{v}) .
 - c. Déterminer la nature du triangle ABC.
- **4.** On appelle D l'image de A par la rotation de centre O et d'angle $\frac{\pi}{6}$, et on appelle $z_{\rm D}$, l'affixe du point D.
 - **a.** Déterminer le module et un argument de z_D .
 - **b.** En déduire la forme algébrique de z_D .
 - c. Placer le point D sur le graphique précédent