Le plan \mathscr{P} est rapporté au repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$ d'unité graphique 1 cm.

On note i le nombre complexe de module 1 et dont un argument est $\frac{\pi}{2}$.

1. Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation :

$$z^2 - 3z + 9 = 0$$
.

2. On considère les points A et B du plan d'affixes respectives :

$$z_A = \frac{3}{2} + i \frac{3\sqrt{3}}{2}$$
 $z_B = \frac{3}{2} - i \frac{3\sqrt{3}}{2}$.

- **a.** Déterminer le module et un argument des nombres complexes z_A et z_B , puis les écrire sous la forme $re^{i\theta}$, où r est un nombre réel strictement positif et θ un nombre réel compris entre $-\pi$ et π .
- **b.** Placer les points A et B dans le repère $(0, \overrightarrow{u}, \overrightarrow{v})$.
- **c.** Justifier que les points A et B sont symétriques par rapport à l'axe $(0; \vec{u})$.
- 3. On considère la rotation R de centre O et d'angle $-\frac{2\pi}{3}$ et M un point du plan d'affixe z. On note M' le point d'affixe z' image du point M d'affixe z par cette rotation.
 - **a.** Exprimer z' en fonction de z.
 - b. Démontrer que le point B est l'image du point A par la rotation R.
- **4.** On considère les points C et D du plan \mathcal{P} , d'affixes respectives $z_{\rm C}=-3$ et $z_{\rm D}=4$.
 - a. Placer les points C et D sur le graphique précédent.
 - b. Calculer les distances OD, DC et AB.
 - **c.** On note I le milieu du segment [AH]. Calculer la distance IB et déduire la valeur exacte \mathcal{A}_1 de l'aire du triangle CBD.
 - **d.** On note \mathcal{A}_2 l'aire du triangle AOD. Calculer la valeur du quotient $\frac{\mathcal{A}_1}{\mathcal{A}_1}$.