Le plan complexe est muni d'un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. On désigne par i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

- 1. Soit A le point d'affixe $z_A = 1 + i\sqrt{3}$.
 - **a.** Déterminer le module et un argument du nombre complexe z_A .
 - **b.** Écrire le nombre complexe z_A sous la forme $re^{i\theta}$ où r est un nombre réel strictement positif et θ un nombre réel compris entre $-\pi$ et π .
 - **c.** Placer le point A dans le repère $(0, \overrightarrow{u}, \overrightarrow{v})$ en prenant comme unité graphique 2 cm.
- 2. Soit B l'image du point A par la rotation de centre O et d'angle $\frac{\pi}{3}$. On appelle $z_{\rm B}$ l'affixe du point B.
 - **a.** Déterminer l'écriture du nombre complexe $z_{\rm B}$ sous la forme $r{\rm e}^{{\rm i}\theta}$ (où r est un nombre réel strictement positif et θ un nombre réel compris entre $-\pi$ et π).
 - **b.** Écrire le nombre complexe $z_{\rm B}$ sous forme algébrique.
 - **c.** Placer le point B dans le repère $(0, \vec{u}, \vec{v})$.
- 3. Montrer que le triangle AOB est équilatéral.
- **4.** Soit C le point d'affixe $z_{\rm C} = z_{\rm A} {\rm e}^{{\rm i} \frac{\pi}{4}}$.
 - **a.** Par quelle transformation géométrique le point C est-il l'image du point A? Préciser les éléments caractéristiques de cette transformation.
 - **b.** Placer le point C dans le repère $(0, \overrightarrow{u}, \overrightarrow{v})$
 - **c.** Écrire le nombre complexe $z_{\mathbb{C}}$ sous forme trigonométrique.
 - **d.** Établir que $z_{\rm C} = z_{\rm A} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right)$.

En déduire l'écriture du nombre complexe $z_{\mathbb{C}}$ sous forme algébrique.

e. Déduiree des resultats précédents les valeurs exactes $\cos \frac{7\pi}{12}$ et de $\sin \frac{7\pi}{12}$.