Le plan est rapporté à un repère orthonormé direct $\left(0,\overrightarrow{u},\overrightarrow{v}\right)$ d'unité graphique 1 cm. On note i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

- 1. Résoudre dans l'ensemble des nombres complexes $\mathbb C$ les équations d'inconnue z suivantes :
 - **a.** $z^2 = -1$;
 - **b.** $z^2 4z + 13 = 0$;
 - **c.** z 3i = -2iz + 4.
- 2. Soient A, B et C les points d'affixes respectives

$$z_{A} = i$$
, $z_{B} = 2 + 3i$ et $z_{C} = \frac{4 + 3i}{1 + 2i}$.

- **a.** Placer les points A et B dans le repère $(O, \overrightarrow{u}, \overrightarrow{v})$.
- **b.** Calculer la distance AB.
- **c.** Montrer que $z_C = 2 i$.
- **3. a.** Calculer le module et un argument de $z_C z_A$.
 - **b.** En déduire l'écriture exponentielle de $z_{\rm C}$ $z_{\rm A}$.
 - **c.** Déterminer géométriquement l'ensemble E des points M d'affixe z du plan qui vérifient $|z-z_A|=2\sqrt{2}$.
 - **d.** Justifier que les points B et C appartiennent à l'ensemble *E* puis tracer cet ensemble dans le plan.