Le plan complexe est rapporté à un repère $\left(0, \overrightarrow{u}, \overrightarrow{v}\right)$ orthonormal direct d'unité graphique 2 cm. On note i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

1. On note P le polynôme défini pour tout nombre complexe z par

$$P(z) = z^3 - 3z^2 + 4z + 8$$
.

- **a.** Vérifier que P(-1) = 0.
- **b.** Déterminer deux nombres réels *a* et *b* tels que pour tout nombre complexe *z*,

$$P(z) = (z+1)(z^2 + az + b).$$

- **c.** Résoudre dans l'ensemble des nombres complexes l'équation P(z) = 0.
- **2.** On note A, B et C les points du plan, d'affixes respectives $z_A = -1$, $z_B = 2 + 2i$ et $z_C = 2 2i$.
 - **a.** Placer les points A, B et C dans le repère $(O, \overrightarrow{u}, \overrightarrow{v})$.
 - **b.** Déterminer le module et un argument des nombres complexes z_A , z_B et z_C . En déduire une écriture exponentielle de ces trois nombres.
 - **c.** Déterminer l'aire en cm² du triangle ABC.