On considère la fonction f définie sur l'ensemble \mathbb{R} des nombres réels par

$$f(x) = e^{x-1} + x - 1.$$

On note $\mathscr C$ sa courbe représentative dans le plan muni d'un repère orthonormal $\left(0,\overrightarrow{\iota},\overrightarrow{J}\right)$ d'unité graphique 1 cm.

Partie A

- **1.** Calculer f(0) et f(1). On donnera les valeurs exactes.
- **2. a.** Calculer la limite de f en $-\infty$.
 - **b.** Montrer que la droite \mathcal{D} d'équation y = x 1 est asymptote oblique à la courbe \mathscr{C} .
- **3.** Calculer la limite de f en $+\infty$.

Partie B

- **1. a.** On note f' la fonction dérivée de f. Calculer f'(x) pour tout x réel et étudier son signe sur \mathbb{R} .
 - **b.** Dresser le tableau de variations de f sur \mathbb{R} .

2.

- 1. Montrer que sur l'intervalle [0 ; 1] l'équation f(x) = 0 admet une seule solution α .
- **2.** Donner une valeur, arrondie au centième, de α .
- **3.** Préciser le signe de f(x) selon les valeurs du réel x.

Tracer la droite \mathscr{D} et la courbe \mathscr{C} dans le repère $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$.

Partie C

- **1.** Déterminer une primitive F de la fonction f sur \mathbb{R} .
- **2.** Calculer l'intégrale $I = \int_1^3 f(x) \, dx$. Donner la valeur exacte de I, puis une valeur décimale arrondie au centième. Donner une interprétation graphique de cette intégrale.