1. « Un accroissement de population de $1.8\,\%$ par an peut paraître faible, il correspond pourtant à un doublement de la population en $40\,$ ans « .

Cette affirmation est-elle exacte? Justifier.

2. D'après l'INED (Institut National d'Etudes Démographiques), la population mondiale a suivi l'évolution suivante :

année	1960	1970	1980	1990	2000
Rang: x_i (0 $\leq x_i \leq 4$)	0	10	20	30	40
Population : y_i en millions	3 014	3 683	4 453	5 201	6 080
d'habitants ($0 \leqslant y_i \leqslant 4$)					

- **a.** Calculer T, le taux d'évolution en pourcentage de la population mondiale entre 1960 et 2000 (arrondir à 0,1% près).
- **b.** On appelle t le taux d'évolution moyen annuel, en %, entre 1960 et 2000.

Montrer que
$$t$$
 vérifie $\left(1 + \frac{t}{100}\right)^{40} \approx 2,017$.

En déduire une valeur approchée de t (arrondie au dixième de pourcentage).

- **3.** On suppose qu'à partir de l'an 2000, le taux d'évolution annuel de la population reste constant et égal à 1,8 %. Donner une estimation de la population mondiale en 2008 à 100 millions près.
- **4. a.** On décide de modéliser les données du tableau ci-dessus avec un ajustement affine. À l'aide de la calculatrice, déterminer une équation de la droite d'ajustement de *y* en *x* par la méthode des moindres carrés.
 - **b.** Calculer la population mondiale en millions d'habitants qui aurait dû être atteinte en 2008 d'après ce modèle (à 100 millions près).
- 5. En fait, en 2008 on vient de dépasser 6,5 milliards d'habitants.

Des deux estimations précédentes, laquelle est la plus proche de la réalité?