I. Étude d'une fonction auxiliaire g

On note g la fonction définie sur l'ensemble $\mathbb R$ des nombres réels par :

$$g(x) = e^{-x}(-3x+1) + 1.$$

- 1. Calculer la dérivée g' de la fonction g.
- **2.** Étudier le sens de variation de la fonction g sur \mathbb{R} , et dresser le tableau de variations (On ne demande pas les limites de g en $+\infty$ et en $-\infty$.)
- **3.** Calculer $g\left(\frac{4}{3}\right)$ et en déduire le signe de la fonction g sur \mathbb{R} .

II. Étude de la fonction f.

Soit f une fonction définie sur l'ensemble $\mathbb R$ des nombres réels par :

$$f(x) = e^{-x}(3x+2) + x.$$

On note \mathscr{C} sa courbe représentative dans le repère orthogonal $(0, \vec{i}, \vec{j})$.

- 1. Étude des limites.
 - **a.** Déterminer la limite de f en $+\infty$.
 - **b.** Déterminer lalimite de f en $-\infty$.
- **2.** Étude des variations de f.
 - **a.** Calculer la dérivée f' de la fonction f, et démontrer que, pour tout réel x: f'(x) = g(x).
 - **b.** En déduire le tableau de variations de la fonction f.
- 3. Démontrer que la droite \mathscr{D} d'équition y = x est asymptote à la courbe \mathscr{C} en $+\infty$, et préciser la position de la courbe \mathscr{C} par rapport à la droite \mathscr{D} . (On notera A leur point d'intersection.)
- 4. Déterminer l'abscisse du point B de la courbe $\mathscr C$ où la tangente $\mathscr T$ est parallèle à la droite $\mathscr D$.
- **5.** Tracer, dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$, les droites \mathscr{D} et \mathscr{T} . Placer les points A et B puis tracer la courbe \mathscr{C} .