On considère la fonction f, définie sur l'ensemble \mathbb{R} des nombres réels par

$$f(x) = e^{2x} - 5e^x + 4.$$

On désigne par (\mathscr{C}) sa courbe représentative dans un repère orthogonal $\left(0,\overrightarrow{t},\overrightarrow{J}\right)$ (unités : 2 cm en abscisse, 1 cm en ordonnée).

Partie A: limites aux bornes de l'ensemble de définition

- **1.** Montrer que la droite (\mathscr{D}) d'équation y = 4 est asymptote à (\mathscr{C}) en $-\infty$.
- **2. a.** Montrer que, pour tout nombre réel x, $f(x) = (e^x 1)(e^x 4)$.
 - **b.** En déduire la limite de f en $+\infty$.

Partie B: intersection de la courbe ($\mathscr C$) avec l'axe des abscisses

En utilisant la forme factorisée de f(x) donnée dans la partie A. 2. a., déterminer les abscisses des points d'intersection de la courbe (\mathscr{C}) avec l'axe des abscisses.

Partie C: étude des variations de la fonction f

- 1. a. Déterminer la dérivée f' de la fonction f.
 - **b.** Étudier le signe de f'(x) suivant les valeurs du nombre réel x.
- **2.** Montrer en **détaillant vos calculs** que $f\left(\ln\frac{5}{2}\right) = -\frac{9}{4}$.
- 3. Déduire des questions précédentes le tableau de variations complet de la fonction f.
- **4.** À l'aide du tableau de variations et du résultat acquis à la partie B, donner le tableau de signes de la fonction f sur \mathbb{R} .
- **5.** Tracer la droite (\mathcal{D}) puis la courbe (\mathcal{C}) , pour x appartenant à l'intervalle [-4; 2], dans le repère défini en début de problème.