Soit *f* la fonction définie, pour tout nombre réel *x*, par :

$$f(x) = e^{2x} - 5e^x + 4.$$

On note \mathscr{C} sa courbe représentative dans le plan muni d'un repère orthogonal $\left(0, \overrightarrow{\iota}, \overrightarrow{\jmath}\right)$ (unités graphiques : 4 cm pour une unité sur l'axe des abscisses et 1 cm pour une unité sur l'axe des ordonnées).

PARTIE A : Étude de la fonction f

- 1. a. Déterminer la limite de la fonction f en $-\infty$. En déduire que la courbe $\mathscr C$ admet une asymptote D dont on précisera une équation.
 - **b.** Montrer que pour tout nombre réel $x: f(x) = e^x (e^x 5) + 4$. En déduire la limite de la fonction f en $+\infty$.
- **2. a.** Soit f' la fonction dérivée de la fonction f. Pour tout nombre réel x, calculer f'(x).

Montrer que pour tout nombre réel x, $f'(x) = e^x (2e^x - 5)$.

- **b.** Résoudre dans l'ensemble \mathbb{R} des nombres réels l'équation $2e^x 5 = 0$. Résoudre ensuite dans \mathbb{R} l'inéquation $2e^x 5 > 0$.
- **c.** En déduire les variations de la fonction f. Indiquer la valeur exacte de $f\left(\ln\frac{1}{2}\right)$.
- **3.** Montrer que l'équation f(x) = 0 a une unique solution sur l'intervalle [1; 2]. Donner une valeur approchée à 10^{-2} près de cette solution.
- **4. a.** Montrer que le point O appartient à la courbe \mathscr{C} .
 - **b.** Déterminer le coefficient directeur de la tangente Δ à la courbe $\mathscr C$ au point O.
- **5.** Tracer dans le repère $(0, \vec{i}, \vec{j})$ l'asymptote D la droite Δ et, sur l'intervalle [-2,5;2], la courbe \mathscr{C} .