Partie I

On considère la fonction g définie sur l'ensemble $\mathbb R$ des nombres réels par :

$$g(x) = x - 1 + e^{2x}$$
.

On note \mathscr{C}_g la courbe représentative de la fonction g dans un repère orthogonal $\left(0, \overrightarrow{l}, \overrightarrow{j}\right)$ du plan. On prend comme unité graphique 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

- 1. Calculer les limites de g en $-\infty$ et en $+\infty$.
- **2.** Soit \mathcal{D} la droite d'équation y = x 1.
 - **a.** Démontrer que \mathscr{D} est asymptote à \mathscr{C}_g en $-\infty$.
 - **b.** Étudier les positions relatives de \mathscr{D} et \mathscr{C}_g .
- **3.** Soit g' la fonction dérivée de g.
 - **a.** Calculer, pour tout x réel, g'(x) et montrer que la fonction g est strictement croissante sur \mathbb{R} .
 - **b.** Dresser le tableau de variations de g.
- **4.** Calculer g(0) puis justifier l'affirmation suivante : « si x < 0, alors g(x) < 0; si x > 0, alors g(x) > 0 ».
- **5.** Construire dans le repère $(0, \vec{l}, \vec{j})$ la droite \mathcal{D} et la courbe \mathscr{C}_g . (On utilisera une feuille de papier millimétré.)

Partie II

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = (x-1)^2 + e^{2x}$$
.

- 1. Soit f' la fonction dérivée de f. Démontrer que, pour tout x réel, f'(x) = 2g(x).
- **2.** En utilisant la question I. 4., dresser le tableau de variation de la fonction *f* (les limites ne sont pas demandées).
- **3.** En déduire la valeur de *x* pour laquelle la fonction *f* admet un minimum et déterminer ce minimum.

Partie III - Application à un problème de distance minimale

On considère la fonction h définie sur \mathbb{R} par :

$$h(x) = e^x$$
.

On donne en annexe la courbe représentative \mathscr{C}_h de la fonction h dans un repère orthonormal d'origine Ω . On a également représenté le point P de coordonnées (1; 0).

On rappelle que, dans un repère orthonormal, le carré de la distance entre les points $A(x_A, y_A)$ et $B(x_B, y_B)$ est donné par : $AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$.

- 1. **a.** Placer, dans le repère donné en annexe, les points $A(-1; e^{-1})$ et B(1; e)
 - **b.** Calculer PA² et PB².
- **2.** On considère, pour un réel x, le point M de \mathcal{C}_h d'abscisse x, c'est-à-dire le point $M(x; e^x)$.
 - **a.** Montrer que $PM^2 = f(x)$, où f est la fonction étudiée dans la partie II.
 - **b.** En déduire les coordonnées du point de la courbe \mathcal{C}_h le plus proche du point P.

Dans cette question particulièrement, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Problème : partie II

