Le plan est rapporté à un repère orthonormal $(O, \overrightarrow{\iota}, \overrightarrow{J})$ d'unité graphique 2 cm. On appelle $\mathscr C$ la courbe représentative dans le repère orthonormal $(O, \overrightarrow{\iota}, \overrightarrow{J})$ de la fonction f définie pour tout réel x par

 $f(x) = (ax^2 + bx + c)e^x$, où a, b et c désignent trois nombres réels tels que :

- le point A de coordonnées (0; -1) appartient à la courbe \mathscr{C} ;
- la courbe $\mathscr C$ admet au point A une tangente parallèle à l'axe des abscisses ;
- f(1) = 2e.

Partie A

- **1.** Démontrer que c = -1.
- **2.** Soit f' la fonction dérivée de la fonction f sur \mathbb{R} .
 - **a.** En remplaçant c par sa valeur, donner pour tout réel x, l'expression de f'(x) en fonction de a et de b.
 - **b.** Calculer a et b.

Partie B

On admet que pour tout réel x, $f(x) = (2x^2 + x - 1)e^x$.

- **1.** a. Déterminer la limite de f en $+\infty$.
 - **b.** Déterminer la limite de f en $-\infty$ (on rappelle que, pour tout entier naturel n, $\lim_{x\to -\infty} x^n e^x = 0$).

Interpréter graphiquement ce résultat

- **2. a.** Vérifier que, pour tout réel x, $f'(x) = x(2x+5)e^x$.
 - **b.** Étudier le signe de f'(x) selon les valeurs du réel x.
 - **c.** Dresser le tableau de variations de la fonction f.
- 3. Déterminer par le calcul les coordonnées des points d'intersection de la courbe $\mathscr C$ avec l'axe des abscisses.
- **4.** Tracer la courbe $\mathscr C$ dans le repère $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$.