Partie A: résolution d'une équation différentielle

Dans cette partie, on se propose de déterminer une solution particulière de l'équation différentielle

$$(E_1): y' + 2y = x$$

où y désigne une fonction numérique de la variable x, définie et dérivable sur l'ensemble \mathbb{R} des nombres réels.

- **1.** Résoudre l'équation différentielle (E_2) : y' + 2y = 0.
- **2.** Vérifier que la fonction u définie sur l'ensemble \mathbb{R} des nombres réels, par $u(x) = \frac{1}{2}x \frac{1}{4}$, est une solution de l'équation différentielle (E_1) .
- 3. On admet que toute solution φ de l'équation (E_1) est de la forme $\varphi(x) = u(x) + Ce^{-2x}$ où C est un nombre réel quelconque et u la fonction définie à la question 2.

Déterminer la solution φ_0 de l'équation (E_1) telle que : $\varphi_0(0) = \frac{3}{4}$.

Partie B: étude d'une fonction

medskip

On note f la fonction définie sur l'ensemble $\mathbb R$ des nombres réels par :

$$f(x) = \frac{1}{2}x - \frac{1}{4} + e^{-2x}.$$

On désigne par \mathscr{C} sa courbe représentative dans un repère orthogonal $(0, \vec{i}, \vec{j})$, d'unités 4 cm en abscisses et 10 cm en ordonnées.

- 1. Étude des limites de la fonction f
 - **a.** Déterminer la limite de f en $+\infty$
 - **b.** Justifier que $f(x) = e^{-2x} \left(\frac{1}{2} x e^{2x} \frac{1}{4} e^{2x} + 1 \right)$ et en déduire la limite de f en $-\infty$.
 - **c.** Démontrer que la droite \mathscr{D} d'équation $y = \frac{1}{2}x \frac{1}{4}$ est asymptote à la courbe \mathscr{C} en $+\infty$, et préciser la position de la courbe \mathscr{C} par rapport à la droite \mathscr{D} .
- **2.** Étude des variations de la fonction *f*
 - **a.** Déterminer l'expression de la dérivée f' de la fonction f.
 - **b.** Résoudre l'inéquation $e^{-2x} \le \frac{1}{4}$ et en déduire le tableau des variations de la fonction f.
 - **c.** Déterminer l'équation de la tangente $\mathcal T$ à la courbe $\mathscr C$ en son point d'abscisse 0.
 - **d.** Montrer que l'équation $f(x) = \frac{1}{2}$ possède une unique solution sur l'intervalle [1; 2]. Justifier avec précision et donner un encadrement d'amplitude 10^{-2} de cette solution.
- **3.** Tracer, dans le repère $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$, les droites \mathscr{D} et \mathscr{T} , puis tracer la courbe \mathscr{C}

Partie C: Calcul d'une aire

- **1.** Soit m un nombre réel strictement supérieur à $\ln 2$. On note $\mathscr{A}(m)$ l'aire, exprimée en unité d'aire, du domaine plan délimité par la courbe \mathscr{C} , la droite \mathscr{D} et les droites d'équations $x = \ln 2$ et x = m. Déterminer $\mathscr{A}(m)$ en fonction de m.
- **2.** Calculer la limite de $\mathcal{A}(m)$ lorsque m tend vers $+\infty$.