On considère la fonction f définie et dérivable sur $\mathbb R$ par

$$f(x) = e^{-x} + 2x - 2.$$

On note ($\mathscr C$) la courbe représentative de la fonction f dans un repère orthonormal $\left(\mathbf{0},\overrightarrow{\imath},\overrightarrow{\jmath}\right)$ du plan.

1. Vérifier que la fonction F définie sur $\mathbb R$ par

$$F(x) = -e^{-x} + x^2 - 2x$$

est une primitive de f sur \mathbb{R} .

- **2.** Soit (\mathscr{E}) le domaine du plan délimité par la courbe (\mathscr{C}), l'axe des abscisses et les droites d'équation x=1 et x=3. Hachurer le domaine (\mathscr{E}). Soit (\mathscr{A}) l'aire du domaine (\mathscr{E}) en unités d'aire, calculer la valeur exacte de (\mathscr{A}). Donner une valeur approchée de (\mathscr{A}) à 10^{-2} près.
- 3. Calculer la valeur moyenne μ de f sur [1; 3]. Interpréter graphiquement cette valeur.