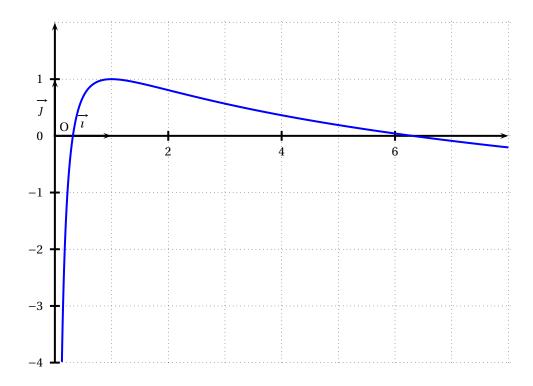
Soit f la fonction définie sur l'intervalle ]0;  $+\infty[$  par :

$$f(x) = 2 - \frac{1}{x} - \ln x.$$

On note  $\mathscr C$  sa courbe représentative dans un repère orthogonal  $\left(0,\overrightarrow{\iota},\overrightarrow{\jmath}\right)$ ; la courbe  $\mathscr C$  est donnée en annexe.


1. On note G la fonction définie sur l'intervalle ]0;  $+\infty[$  par :

$$G(x) = x - x \ln x$$
.

Calculer G'(x).

- **2.** En déduire une primitive F de la fonction f sur l'intervalle ]0;  $+\infty[$
- **3.** On considère la partie du plan comprise entre les droites d'équation x = 1 et x = 6 d'une part, entre l'axe horizontal et la courbe  $\mathscr C$  d'autre part. On note  $\mathscr A$  l'aire de cette partie de plan, exprimée en unités d'aire.
  - a. Hachurer cette partie de plan sur la feuille annexe,
  - **b.** Donner la valeur exacte de l'aire  $\mathcal{A}$ , puis sa valeur arrondie au centième.

**Annexe:** tracé de la courbe  $\mathscr{C}$  représentative de la fonction f dans le repère orthogonal  $(0, \vec{\iota}, \vec{\jmath})$ 

